A Moment Majorization principle for random matrix ensembles with applications to hardness of the noncommutative Grothendieck problem

نویسندگان

  • Steven Heilman
  • Thomas Vidick
چکیده

We prove a moment majorization principle for matrix-valued functions with domain {−1, 1}m, m ∈ N. The principle is an inequality between higher-order moments of a non-commutative multilinear polynomial with different random matrix ensemble inputs, where each variable has small influence and the variables are instantiated independently. This technical result can be interpreted as a noncommutative generalization of one of the two inequalities of the seminal invariance principle of Mossel, O’Donnell and Oleszkiewicz. Our main application is sharp Unique Games hardness for two versions of the noncommutative Grothendieck inequality. This generalizes a result of Raghavendra and Steurer who established hardness of approximation for the commutative Grothendieck inequality. A similar application was proven recently by Briët, Regev and Saket using different techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to Pdf Estimation of Electricity Price

In this paper, the continuous optimal control theory is used to model and solve the maximum entropy problem for a continuous random variable. The maximum entropy principle provides a method to obtain least-biased probability density function (Pdf) estimation. In this paper, to find a closed form solution for the maximum entropy problem with any number of moment constraints, the entropy is consi...

متن کامل

Quantum Statistical Information, Entropy, Maximum Entropy Principle in Various Quantum Random Matrix Ensembles

Random matrix ensembles (RME) of quantum statistical Hamiltonian operators, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), found applications in literature in study of following quantum statistical systems: molecular systems, nuclear systems, disordered materials, random Ising spin systems, quantum chaotic systems, and two-dimensional electron sy...

متن کامل

Multilinear Maps Using Random Matrix

Garg, Gentry and Halevi (GGH) described the first candidate multilinear maps using ideal lattices. However, Hu and Jia presented an efficient attack on GGH map, which breaks the GGH-based applications of multipartite key exchange (MPKE) and witness encryption (WE) based on the hardness of 3-exact cover problem. We describe a new construction of multilinear map using random matrix, which support...

متن کامل

On linear preservers of sgut-majorization on $textbf{M}_{n,m}$

Abstract. Let Mn;m be the set of n-by-m matrices with entries inthe field of real numbers. A matrix R in Mn = Mn;n is a generalizedrow substochastic matrix (g-row substochastic, for short) if Re e, where e = (1; 1; : : : ; 1)t. For X; Y 2 Mn;m, X is said to besgut-majorized by Y (denoted by X sgut Y ) if there exists ann-by-n upper triangular g-row substochastic matrix R such thatX = RY . This ...

متن کامل

Entropy, Maximum Entropy Priciple and Quantum Statistical Information for Various Random Matrix Ensembles

The random matrix ensembles (RME) of quantum statistical Hamiltonians, e.g. Gaussian random matrix ensembles (GRME) and Ginibre random matrix ensembles (Ginibre RME), are applied in literature to following quantum statistical systems: molecular systems, nuclear systems, disordered materials, random Ising spin systems, and two-dimensional electron systems (Wigner-Dyson electrostatic analogy). Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.05620  شماره 

صفحات  -

تاریخ انتشار 2016